Assessment Schedule – 2007

Calculus: Manipulate real and complex numbers, and solve equations (90638)

Evidence and Judgement Statements

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
T	Manipulate real and	1(a)	-5-3i	A1	No alternative	ACHIEVEMENT
	complex numbers and solve	1(b)	$-\frac{1}{2}+\frac{7}{2}i$	A1	Or equivalent	FOUR of Code A
ACHIEVEMENT	equations	2	$12 \operatorname{cis} \frac{19\pi}{28}$	A1	Or equivalent	including at least
ACHIEV		3	$19 + 4\sqrt{2}$	A1	No alternative	ONE of Code A1
ł		4(a)	$x = (2 \pm \sqrt{3})a$	A2	Or equivalent	AND
		4(b)	x = -145	A2	No alternative	ONE of Code A2
ACHIEVEMENT WITH MERIT	Solve more complicated equations	5 6 7	$(2\sqrt{x+1})^{2} = p\sqrt{x}$ $4x+4 = p^{2}x$ $x = \frac{4}{p^{2}-4}, \ p \neq \pm 2$ $(3x-1)\ln 2 = (x-q)\ln 7$ $x = \frac{\ln 2 - q \ln 7}{3\ln 2 - \ln 7}$ $r^{4}\operatorname{cis} 4\theta = 16\operatorname{cis} \frac{2\pi}{5}$ $\sqrt[4]{16\operatorname{cis} \frac{2\pi}{5}} = \sqrt[4]{16}\operatorname{cis} (\frac{\pi}{10} + \frac{k\pi}{2})$ 4 solutions are: $2\operatorname{cis} \frac{\pi}{10}, 2\operatorname{cis} \frac{3\pi}{5}, 2\operatorname{cis} (-\frac{2\pi}{5}), 2\operatorname{cis} (-\frac{9\pi}{10})$	A2 M A2 M A2 M	Accept $x = \frac{4}{p^2 - 4}$ Or equivalent Or equivalent Or equivalent	MERIT: Achievement PLUS TWO of Code M OR THREE of Code M

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT WITH EXCELLENCE	Solve problem(s) involving real or complex numbers	8	$ z-3i - z+3i =2$ $ x+i(y-3) - x+i(y+3) =2$ $\sqrt{x^{2}+(y-3)^{2}} - \sqrt{x^{2}+(y+3)^{2}} = 2$ $(3y+1)^{2} = x^{2} + y^{2} + 6y + 9$ $x^{2} - 8y^{2} + 8 = 0$ Bottom branch only: $y = -\sqrt{\frac{x^{2}}{8} + 1}$ $y = -\sqrt{\frac{x^{2}}{8} + 1}$ $y = -\sqrt{\frac{x^{2}}{8} + 1}$	A1 or A2 M E	Or equivalent. Accept an answer that indicates both branches of the hyperbola	EXCELLENCE: Merit plus Code E

Judgement Statement — 2007

Achievement	Achievement with Merit	Achievement with Excellence	
Manipulate real and complex numbers, and solve equations.	Solve more complicated equations.	Solve problem(s) involving real or complex numbers.	
$4 \times A$ including at least $1 \times A1$ and $1 \times A2$	Achievement plus 2 × M or 3 × M	Merit plus 1 × E	

The following Mathematics specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may be used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.